

MODEL:

MODEL:

THIS REFRIGERATOR CONFORMS TO THE COMMERCIAL REFRIGERATOR MANUFACTURERS ASSOCIATION HEALTH AND SANITATION STANDARD. CRS-SI-78

DIVISION OF KYSOR INDUSTRIAL CORPORATION

1600 ROCKDALE INDUSTRIAL BLVD., CONYERS, GEORGIA 30207/404+483+5600

The advantages of parallel refrigeration systems are well known and accepted in the industry for their past performances. The simplicity and compactness of design make the addition of hot gas defrost, and/or heat reclaim a simple and economical feature. The most important point in planning an installation of the Warren/Sherer Dual Metic system is the total load required by the system.

The selection and design of the system is based on the needs of the individual customer. This information must be passed on to the design engineer and must be complete and accurate. Due to the individuality of each customer and his needs it is therefore impossible to categorize the Dual Metic system. The customer must make his needs known to the sales engineer, and he in turn must be sure that this information is passed on to the design engineer who will in turn design the system.

In operation, the Warren/Sherer Dual Metic System will have one compressor designated as the main, or lead compressor and will for all practical purposes run continually; the second compressor will start and stop as the load of the system demands.

Component parts have been selected for their dependability and availability to keep service problems to a minimum. Simplicity of design has also made the Warren/Sherer Dual Metic one of the easiest to service and install.

RECEIPT AND INSPECTION OF EQUIPMENT

Inspect the dual metic units and any accessories shipped with them for damages or shortages <u>before</u> and during unloading. If there is any damage, the carrier should be notified immediately and an inspection requested. The delivery receipt <u>"must"</u> be noted that the equipment was received damaged. If damage is of a concealed nature you must contact the carrier immediately or no later than three (3) days following delivery. A claim <u>must</u> be filed with the <u>carrier</u>, by the consignee for all damage.

NOTE: Your equipment, when delivered, will have a sticker attached advising what must be done to report any damage.

In the following pages will be found explanations of system components, wiring and piping diagrams, control settings, and operational guides. Any additional information may be obtained by calling the Sales Engineer in your area, or contacting the Warren/Sherer plant in Conyers, Georgia.

-1-

The basic construction of the Dual Metic System is made up of carefully selected over-the-counter items that can be readily obtained at refrigeration wholesalers. As previously mentioned, each system is custom designed to meet the needs of each customer. The following is a description of a Dual Metic System containing all of the components available.

ELECTRICAL

All solenoids, contactors, controls, timeclocks, and crank case heaters are installed and wired at the factory. Electrical connections to the Dual Metic System include main three phase power, and control circuits. These are made in the control panel. The control panel is located above and to the rear of the compressors and is serviced from the front of the system.

Dual Metic units are available with compressors rated at 208/230/3/60 or 440/480/3/60 and a single power feed is required for the unit. If the compressors are 440/480/3/60 a separate 208/230/1/60 control circuit supply is required. If electric defrost is used a 208/230/3/60 supply is required, which may be combined with the control circuit supply. An optional transformer may be added to step down the 440V for the control circuit on each unit.

All field wiring must be in compliance with the NEC and local codes. Minimum unit wiring ampacity and maximum fuse sizes as calculated per the National Electric Code are shown on the dual metic nameplate.

Typical 208/230 and 440/480 volt wiring diagrams are shown with typical circuit wiring for different types of circuits on page . All types of defrost circuits may be intermixed in the panel depending on the individual state requirements. The wiring diagram sent with each dual metic is the diagram for that particular unit and shows the circuit wiring for the circuits as set up for that specific application.

Dual metic units with optional heat reclaim require two wires from the store environmental control panel supplying voltage requested by the customer.

COMPRESSORS

The compressors are solid mounted using the Warren/Sherer oil system or the optional AC & R pressurized system. Crankcase heaters and compressor cooling fans are installed and wired. High/Lo and oil failure controls are installed and wired. Liquid and suction filter core is also factory installed while the liquid line filter/drier cores are supplied for field installation.

PIPING

All piping leaving the unit is equipped with a shut-off valve with the exception of the heat reclaim line, this can be added at the customer's request. The system is sealed and leak tested before leaving the factory, and is shipped with a holding charge.

- 2-

HOT GAS DEFROST

Due to the compactness of the Dual Metic System, and the availability of hot gas at the unit, hot gas defrost can be readily incorporated into the total system design. The hot gas header is installed between the liquid and suction headers at the rear of the unit and each circuit is piped into the suction line. Manual shut-off and solenoid valves are installed and wired; refer to Page diagram. The hot gas line is piped into the suction line up-stream of the EPR valve. All controls, valves, and piping come factory installed. Cases are equipped when ordered.

When defrost is initiated by the timeclock, the main liquid line solenoid is energized on defrost. Circuit liquid line solenoid (if used) and suction stop are de-energized. The hot gas enters the suction line and travels to the evaporator; (Reverse cycle). As the hot gas condenses in the evaporator, it travels around the expansion valve through a built-in check valve, and back through the liquid line to the liquid line header. This returning liquid in turn feeds the circuits still calling for refrigeration. Should the returning liquid not be adequate for the demand, the pressure in the liquid header will start to drop. When a difference of twenty (20) pounds between the liquid header and main liquid line pressures occur, a twenty (20) pound differential check valve piped in parallel with the main liquid line solenoid will open and supply the required liquid.

UNIT DESIGNATION

Units come numbered, and circuits are designated including condenser and heat reclaim coils. All refrigeration circuits are numbered from one to eight and from left to right facing the electrical panel.

EXAMPLE UNIT DESIGNATION:

DM 2 – 2000 FC

TOTAL NOMINAL H.P.

DUAL METIC

APPLICATION TEMP	f	TYPE	FREON
R-12 Med. Temp.			FC
R-502 Med. Temp.			RC
R-502 Low Temp.			RL

-3-

The basic concept of refrigeration is to transfer heat from one place to another. Heat is removed from the case and its contents, and transferred to the outside, or ambient air. By incorporating a multi-circuited coil in to the air, handling system of the store, this heat can be diverted to heat the store properly.

HEAT RECLAIM

The valving comes factory installed. Piping and wiring from the controls, and the heat reclaim coil are field installed. Warren/Sherer requirements for piping are shown on Page .and are at the customer's choosing. The check valve required for series piping is field furnished.

The heat reclamation coil is installed in the store duct system and is integrated with the heating and air-conditioning system. The coil must be downstream of the AC coil and upstream of any booster heaters. The air should enter the refrigerant outlet side of the coil and the liquid outlet of the coil should be lower than the gas inlet.

HEAD PRESSURE CONTROL

Simply speaking, a diverting valve is installed in the discharge line of the compressor, and is piped to the normal condenser, and the heat reclaim coil. This valve is equipped with an electric solenoid that is activated by the environmental control panel. There is an additional constant pressure valve installed on the discharge line from the compressor, Item #7 on Page 7. It should be noted that this valve is after the supply to the hot gas header, and maintains a constant pressure to the hot gas header. The hot gas needed for defrosting is more critical than the reclaim, should it call for both at the same time. Warren/Sherer incorporates the series system of piping in heat reclaim; the gas passed from the heat reclaim coil to the condenser and back to the receiver. Should the receiver pressure drop below the setting of the hot gas bypass valve, the valve will open to keep the pressure on the liquid receiver.

CONDENSERS

All condensers should be located at an elevation higher than the dual metic unit to assure liquid drainage from the condensers to the receiver. If the condenser has dual drop legs to a single dual metic unit an elevation difference of at least 6 ft. is required. The dual drop legs should be dropped the 6 ft. before being joined together. This is to prevent the possibility of some of the condenser tubes being logged with liquid.

The remote air-cooled condensers must be located so as to receive free air flow through the coil. Exhaust heat from any source must not be allowed to interfere with condenser operations. Vertical air flow condensers must be cross-leveled.

OIL SYSTEMS

The Warren/Sherer oil systsem is comprised of vent line from the suction header and an oil supply line from the oil separator to the common suction and an equalizing line. The AC & R oil system is comprised of an oil float on each crankcase, a common reservoir with high and low indicators, and the vent lines. The oil from the separator is stored in the reservoir under pressure, and is fed into the individual compressor by the float when needed. This is an option.

A. Standard - Balance Line Between Compressors.

The Warren/Sherer oil system consists of an oil separator, a vent line between compressors, an oil supply line from the oil separator to the common suction, and an oil equalizing line between compressors. This system is used only with like compressors. Care must be taken to keep the oil level in the bottom half of the compressor sight glass. To check the oil level it is necessary to shut down both compressors and allow the oil level to stabilize. If this is not done an erroneous determination of oil supply may be made and unneeded oil added to the system. A new system should require approximately 3 to 4 gallons of oil on start up.

B. AC & R Oil Control System.

The AC & R oil control system provides a method of regulating the oil level in each individual crankcase. It does not require that the compressors be the same make or model. The AC & R oil control system uses three basic components:

1. Oil Level Regulators 2. Oil Reservoir 3. Oil Separator

Each compressor has an oil level regulator attached to control the oil level in each individual compressor. The regulators are supplied oil by the common oil reservoir, which in turn is supplied by the oil separator.

The oil level regulator controls the oil level in each indi idual crankcase with a float operated valve. It holds back excess oil until the oil level in the compressor crankcase drops, lowering the float and opening the valve. Oil from the oil reservoir will then be admitted into the crankcase, raising the float. When the correct level is reached the valve will close, stopping the flow of oil to that particular crankcase.

The oil level observed in the sight glass should be within 1/8" of the center of the sight glass on S-9110 series regulators and within the lower quarter of the sight glass on S-9120 series regulators. Maximum differential working pressure is 50 PSIG on the float mechanism. The regulator is U.L. approved at 450 PSIG working pressure design with 2250 PSIG burst strength.

A reserve of oil is necessary for the operation of the AC & R oil control system. The oil reservoir is the holding vessel for this stand by oil. It has two sight glass ports on the shell to observe the oil level inside the vessel. Oil is fed into the oil reservoir by the oil separator.

The value on the top of the oil reservoir automatically receives oil from the oil separator (open positon). To add oil to the oil reservoir manually, close the value and fill the oil reservoir throught he 1/4" flare connection on the side of the value. Open value after filling.

The value on the bottom of the oil reservoir is the distribution value to the oil level regulators (open position). To remove oil from the oil reservoir, close the value and use the 1/4" flare connection on the side of the value to drain the oil out. Open value after draining.

- 5-

AC & R Oil Control System (continued)

On system start-up of a new parallel system, oil should be added to the oil reservoir to the upper sight glass port, NOT ABOVE IT. It is commonly accepted that in a new refrigeration system, some oil will be absorbed by the refrigerant as the system becomes balanced out. After two hours of operation, the oil reservoir, if necessary should again be filled to the upper sight glass and also after two days, by which time the entire refrigeration system should be balanced out. Then the oil reservoir must be observed on each service call. No oil should be added again until the oil level falls below the lower sight glass port.

DUAL METIC

Recommended Control Settings

- A. Set (A7) Discharge Pressure Regulator at 180 PSIG with R-502: 110 PSIG with R-12 and gauge on compressor discharge service valve.
- B. Set (A9) Receiver Pressure Regulator at 160 PSIG with R-502; 90 PSIG with R-12 and gauge on receiver outlet valve.
- C. High Low Pressure Controls:

DUAL METIC PRESSURE SETTING CHART

Low Pressure

	System	Compressor	Cut-Out	Cut-In
	R-502 LT	Comp 1 Comp 2 Satelite (Ice Cream)	1 9 1	9 15 6
K	R-502 /V MT (+20°F)	Comp 1 Comp 2	× 20 29	× 30 38
X	R-17 502 MT (170°F) †2	Comp 1 Comp 2	$\star \overset{30}{_{41}}$	×41 48
	R-502 MT (+20°F)	Comp 1 . Comp 2	30 41	41 48
X	R-12 MT (+ # 0°F)	Comp 1 Comp 2	× 15	X 15 19
/	High Pressure			
	R-502 R-12	Both Comp Both Comp	350 275	
	D. Adjustable	Time Delay Controls		۷
	1 First o	OMDRASSOR -	Approximately 90 sec.	(optional)

1.	First compressor	-	Approximately 90 se	ec. (optional)
2.	Second compressor	-	Approximately 180 s	sec.

E. Defrost and EPR Settings

See Engineering Bulletin #79-130-3

- 7-

SATELLITE

A compressor may be added to the Dual-Metic unit for ice cream cases. This compressor would maintain lower suction pressure than the main suction header and provide several advantages over a remote unit.

Hot gas defrost would be available to the ice cream circuit if desired, and the suction would be connected to the main header providing assistance on pull down and standby protection should the satellite compressor fail.

LOCATION OF EQUIPMENT

The dual metic must be located so they are level and easily serviced. A minimum of 30" service clearance between units and any other walls or stationary equipment is recommended. For dual metic units placed end to end 18 inches between units is adequate. The dual metic is designed so that all pressure regulating valves can be adjusted from the front of the unit should installation in an outdoor machine house be desired or if machine room size necessitates sacrificing service. The machine room ventilation system should provide for approximately 100CFM of air flow for each compressor horsepower. The air intake should be positioned for the air flow to pass over the units.

LIFTING INSTRUCTIONS

The dual metic unit is a heavy piece of machinery and careful considerations of lifting procedures should be made before the unit is lifted by any means. The only part of the unit designed to carry any of the lifting load is the base. The unit may be lifted at the base with a forklift or by means of cables at the four corners of the base. If cables are used the lifting cables should be prevented from contacting any of the unit piping or electrical components.

- 8-

	SYMPTOM	CAUS	E	REMED	УҮ
А.	COMPRESSOR DOES NOT RUN.	1.	MOTOR LINE OPEN	1.	
	·	2.	FUSE BLOWN	2.	DISCONNECT SWITCH REPLACE FUSE
		3.			
			BREAKER	•••	OPERATION
		4.			
			DIRTY OR JAMMED IN OPEN	₹5.	
		-	POSITION.		COMPRESSOR HEAD.
		5.	PISTON SEIZED		LOOK FOR BROKEN VALVE AND JAMMED PARTS.
		6.			REPAIR OR REPLACE
		_		7.	REPLACE TIME DELA
		7.	TIME DELAY DEFECTIVE		ON COMP #2
в.	UNIT SHORT CYCLES	1.	CONTROL DIFFERENTIAL	1	WIDEN DIFFFORNTA
			SET TOO CLOSE.	± •	
		2.		5 2.	REPLACE VALVE PLA
		3.	MOTOR-COMPRESSOR OVER- LOAD	3 .	CHECK FOR HIGH HE PRESSURE, TIGHT BEARINGS, SEIZED PISTONS, FOULED WATER - COOLED CO DENSER.
		4.	REFRIGERANT SHORTAGE	4.	
		5. 6.			
			CUT-OUT.	6.	CHECK CONDENSER AN TOWER PUMPS
с.	COMPRESSOR WILL NOT START - HUMS INTER-	1.	IMPROPERLY WIRED	1.	CHECK WIRING AGAIN
	MITTENTLY (CYCLING ON OVERLOAD).	2.	LOW LINE VOLTAGE	2.	
		3.	RELAY CONTACTS NOT CLOSING.	3.	

TROUBLE-SHOOTING CHART

-- 9-

					PAGE TWO
		4.	OPEN CIRCUIT IN STARTING WINDING	4.	IF LEADS ARE ALL RIGHT, REPLACE
		5.	STATOR WINDING GROUNDED	5.	COMPRESSOR. CHECK ALL STATOR LEADS. IF LEADS ARE ALL RIGHT REPLA COMPRESSOR.
		6.	HIGH DISCHARGE PRESSURE	6.	ELIMINATE CAUSE OF EXCESSIVE PRESSURE. MAKE SURE DISCHARGE SHUT-OFF VALVE IS OPEN.
		7.	TIGHT COMPRESSOR	7.	
D.	UNIT OPERATES LONG OR CONTINUOUSLY		REFRIGERANT SHORTAGE	1.	REPAIR LEAK AND RECHARGE
		2.	CONTROL CONTACTS STICKING IN CLOSED POSITION	2.	CLEAN POINTS OR RE- PLACE CONTROL.
		3.	DIRTY CONDENSER		CLEAN CONDENSER
		4.	AIR IN SYSTEM COMPRESSOR INEFFICIEN	4 .	PURGE
		5.	COMPRESSOR INEFFICIEN	5.	CHECK VALVES AND PISTONS
		6.	IMPROPER WIRING	6.	CHECK WIRING AND CORRECT IF NECESSAR
E.	FIXTURE TEMPERATURE TOO HIGH	1.	REFRIGERANT SHORTAGE	1.	REPAIR LEAK AND RECHARGE
		2. 3.	CONTROL SET TOO HIGH CONTROL WIRING LOOSE		RESET CONTROL CHECK WIRING TO
		4.	EXPANSION VALVE OR	4.	CONTROL CLEAN AND REPLACE
		5.	STRAINER PLUGGED COMPRESSOR INEFFICIEN	т5.	CHECK VALVES AND
		6.	EXPANSION VALVE SET	6.	PISTONS LOWER SETTING
			TOO HIGH		
		7. 8.	ICED OR DIRTY COIL CLOGGED OR SMALL GAS		CLEAR CLOGGING OR
		9.	LINES. OIL LOGGED SYSTEM	9.	INCREASE LINE SIZE REMOVE EXCESS OIL, CHECK REFRIGERANT CHARGE

.

·

F.	HEAD PRESSURE HIGH	TOO	1. 2. 3. 4. 5.	REFRIGERANT OVERCHARGE AIR IN SYSTEM FOULED WATER COOLED CONDENSER HIGH SIDE RESTRICTION WATER REGULATING VALVE SET INCORRECTLY	1. 2. 3.	PURGE CLEAN CONDENSE: CHECK WATER TREATMENT METH(
G.	HEAD PRESSURE LOW	тоо	1.	REFRIGERANT SHORTAGE	1.	REPAIR LEAK ANI RECHARGE
	20.1		2.	COMPRESSOR SUCTION OR DISCHARGE VALVES	2.	CLEAN OR REPLA(LEAKY VALVE
			3.	INEFFICIENT COLD AMBIENT WATER REGULATING VALVE	3.	PLATES NO REMEDY AS EF ICIENCY IS GEN- ERALLY INCREASE HOWEVER, IF CON DENSING TEMP. I BELOW 85°F EXPF VALVES WILL NOT BE ABLE TO FEEI PROPERLY AND SC FORM OF HEAD PRESSURE CONTRC MUST BE PROVIDE READJUST
				SET INCORRECTLY		
н.	NOISY UNIT		1.	INSUFFICIENT COMPRESSOR OIL	1.	ADD OIL TO PRO- PER LEVEL
			2.	TUBING RATTLE	2.	BEND TUBES AWAY FROM CONTACT
			3.	MOUNTINGS LOOSE	3.	
			4.	OIL SLUGGING OR REFRIGERANT FLOODING BACK.	4.	ADJUST OIL LEVE OR REFRIGERANT CHARGE. CHECK EXPANSION VALVE FOR LEAK OR OVERSIZE ORIFIC
			5.	UNBALANCED FAN OR DEFECTIVE FAN MOTOR	5.	REPLACE BENT OR BROKEN FAN BLAD CHECK MOTOR BEA INGS

•

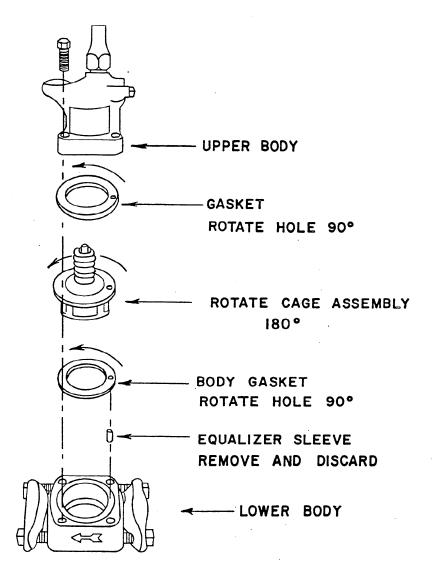
.

- 11-

Ι.	COMPRESSOR LOSES OIL	1. 2. 3. 4. 5. 6.	SHORTAGE OF REFRIGERANT GAS-OIL RATIO LOW PLUGGED EXPANSION VALVE OR STRAINER. OIL TRAPPING IN LINES SHORT CYCLING SUPERHEAT TOO HIGH AT COMPRESSOR SUCTION.	1. 2. 3. 4. 5.	DRAIN TUBING TOWARD
J.	FROSTED OR SWEATING SUCTION LINE	1.	EXPANSION VALVE ADMITTING EXCESS REFRIGERANT	1.	ADJUST EXPANSION VALVE.
к.	HOT LIQUID LINE.	1. 2. 3.	SHORTAGE OF REFRIGERANT EXPANSION VALVE OPEN TOO WIDE IMPROPER WATER FLOW		VALVE
L.	FROSTED LIQUID LINE	1. 2.	PARTIALLY CLOSED OR RESTRICTED.		REMOVE OBSTRUCTION
м.	UNIT IN VACUUM FROST ON EXPANSION VALVE ONLY	1. 2.	ICE PLUGGINGS EXPANSION VALVE ORIFICE. PLUGGED EXPANSION VALVE	2.	TO EXPANSION VALVE. IF SUCTION PRESSURE NOW INCREASES, THERI IS MOISTURE IN THE SYSTEM AND A DRIER SHOULD BE INSTALLED IN THE LINE.

12-

PAGE FIVE

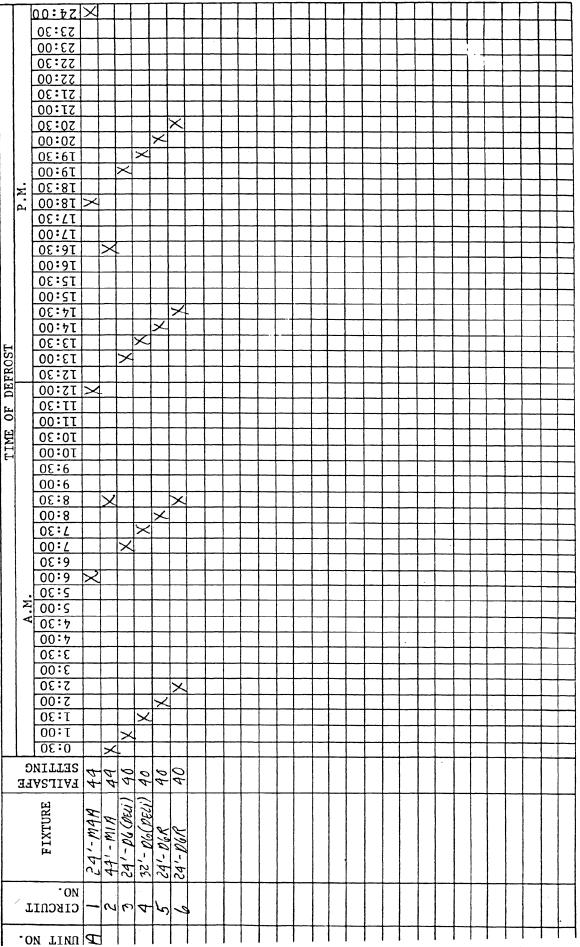

N. COMPRESSOR FAILURE

TO MAINTAIN PARTIAL REFRIGERATION, CLOSE LIQUID HAND VALVES UNTIL AMP DRAW ON RUNNING COMPRESSOR IS WITH IN NAME PLATE LIMITS. REPLACE DEFECTIVE COMPRESSOR.

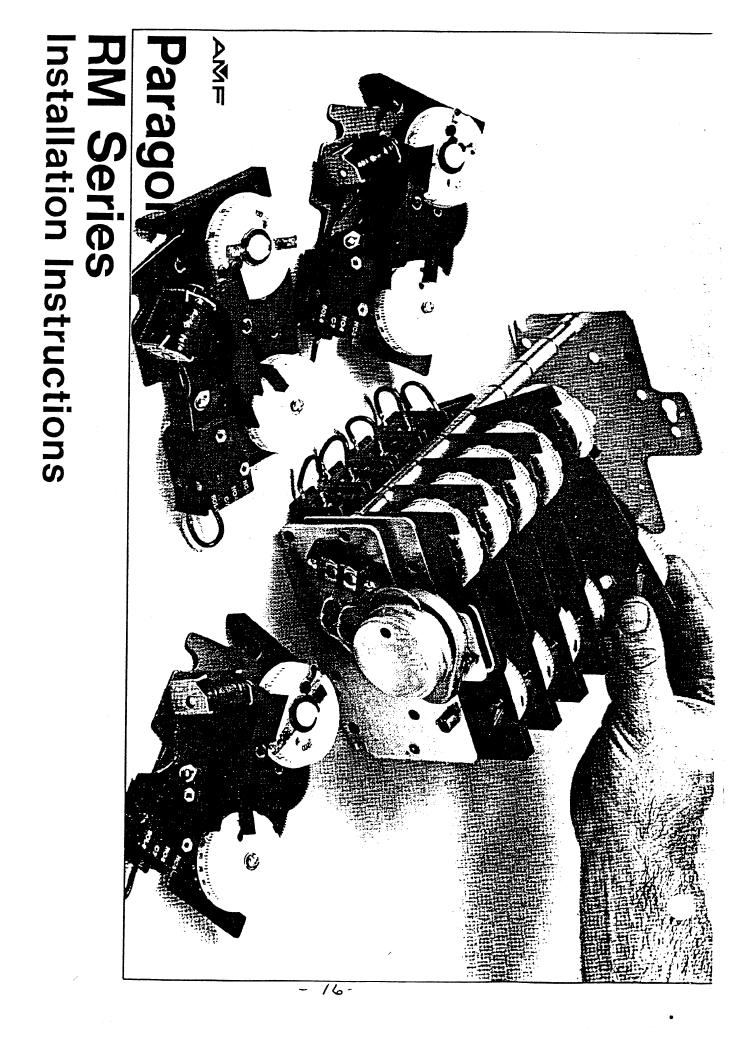
NOTE: FOR START UP AND OPERATIONAL INFORMATION, REFER TO THE INSTALLATION/OPERATION MANUAL.

- 13-

IF AN EPR VALVE IS PURCHASED FROM A REFRIGERATION WHOLE-SALER THE ILLUSTRATED MODIFICATION MUST BE MADE FOR PROPER VALVE OPERATION.


. 14-

TYPE UP


WARREN/SHERER

Dual Metic System

TYPICAL DEFROST SCHEDULE

- 15 -

Installing to Panel

í

- #12 screws. Follow the dimensional diagram Drill holes in panel to accept enclosed. (See back page.)
- Install <u>all</u> brackets to panel with #12 screws. Arrow on side of bracket must point upward on a vertical panel surface. 3
- Hang non-slotted frame rod of Master Unit (unit with motor module) on upper hooks of first two brackets. . .
- If Slave Units are to be used, install coupling on circuit #8 of Master Unit. 4
- Position non-slotted frame rod of Slave Unit on upper hooks of brackets. Be certain that the Frame Locking Tab is in the up position and does not interfere with the mounting feet. Be sure Slave Unit guide pins engage on the Master Unit. Be sure the tongue on Slave Circuit #1 engages the groove on the coupling. Be sure the black numbers on the 24-hour dials line up on both units. See Instructions on Alignment of Program Modules, page 6.) . ى

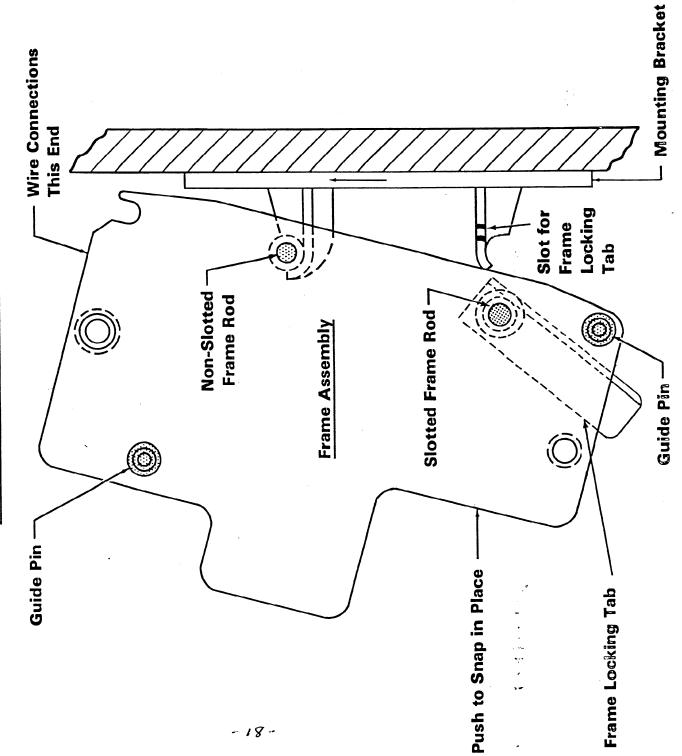
17-

- Push down evenly on all frames and snap the slotted frame rods over the lower bracket hooks. . 0
- Rotate the Frame Locking Tab so that it's lower edge enters the slot in the side of the mounting bracket and the top edge has snapped in place below the lower guide pin. 7.
- Check entire unit for operation by rotating the black reduction gear on the Motor Module. (See page 7.) Be sure all Module dials turn together when this gear s turned by hand. ω.

N

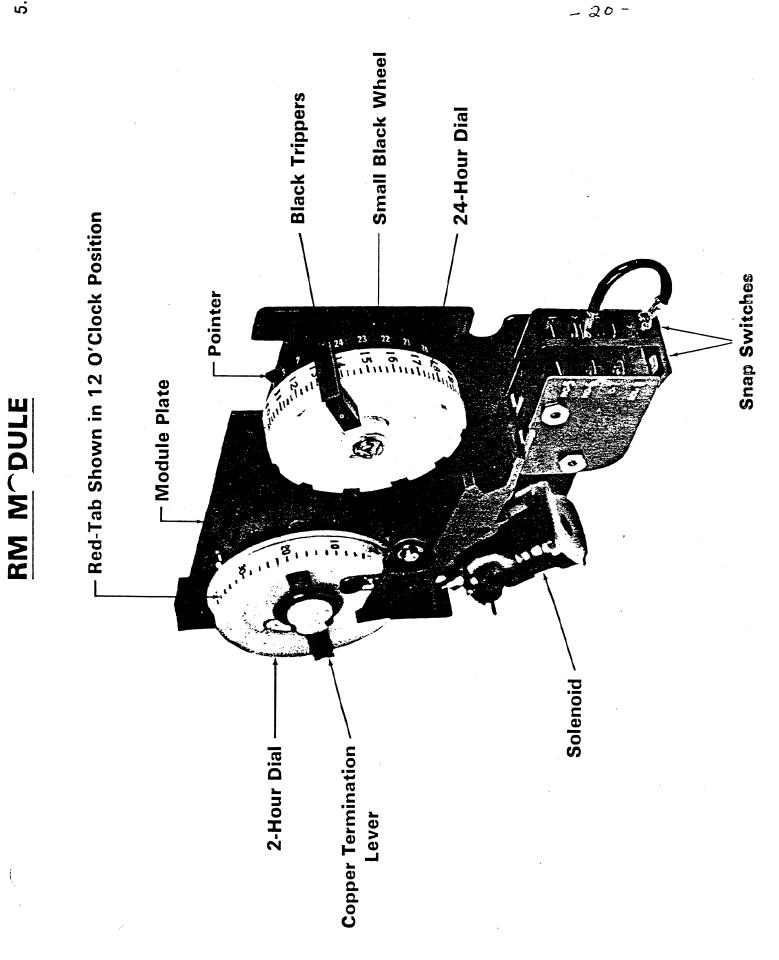
II. Wiring

- Each Program Module is equipped with two SPDT snap switches. Units equipped with integral solenoids have two additional terminals for the solenoid, one of which is factory-bridged to the Normally Open contact on one of the switches.
- 2. Wire line voltage to the Motor Module terminal block. (See page 6.)
- 3. Wire line to Common terminals of all switches.
- Wire loads to N.O. or N.C. switch contacts in accordance with the Cabinet Manufacturer's wiring diagrams. 4.
- On solenoid-terminated units, wire the cycle limit switch for each Program Module in accordance with the Cabinet Manufacturer's wiring diagrams. വ. വ


III. Programming

- 19.

- hour dial at the times of day (indicated by the black numbers) when a defrost For each circuit (Program Module) insert black trippers into the slots in the 24cycle is to occur. .--
- For each circuit, rotate the copper termination lever around the 2-hour dial to set the duration of each defrost cycle. NOTE: To rotate the terminating lever counter-clockwise, it must be pulled slightly away from the dial teeth with finger pressure. Do not bend the lever away from the teeth any farther than is necessary to disengage it from the dial teeth. 3
- 3. Set each Program Module per #1 and #2 above.
- Use the black reduction gear on the Motor Module, see page 6, to rotate the entire assembly until the current time of day (indicated on the smaller black wheel behind each 24-hour diai/ lines up with the pointer stamped behind it as part of the Module Plate. 4.
- The unit is now ready for application of line voltage to the Motor terminal block. . വ



ί

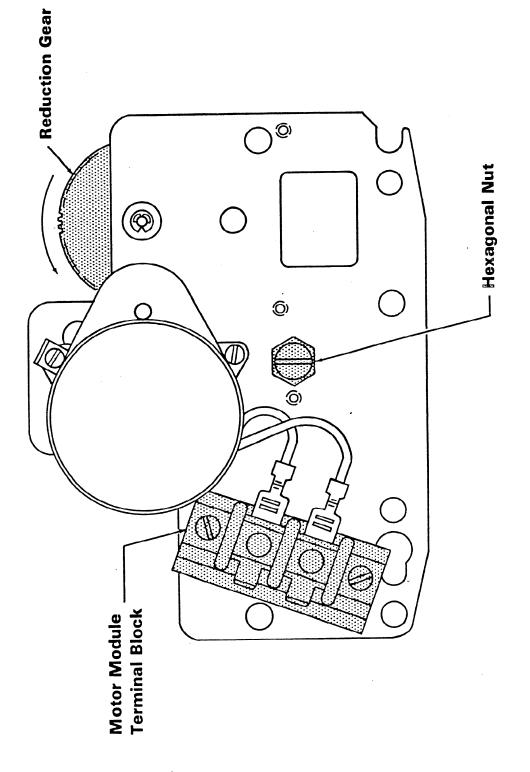
ю

ť

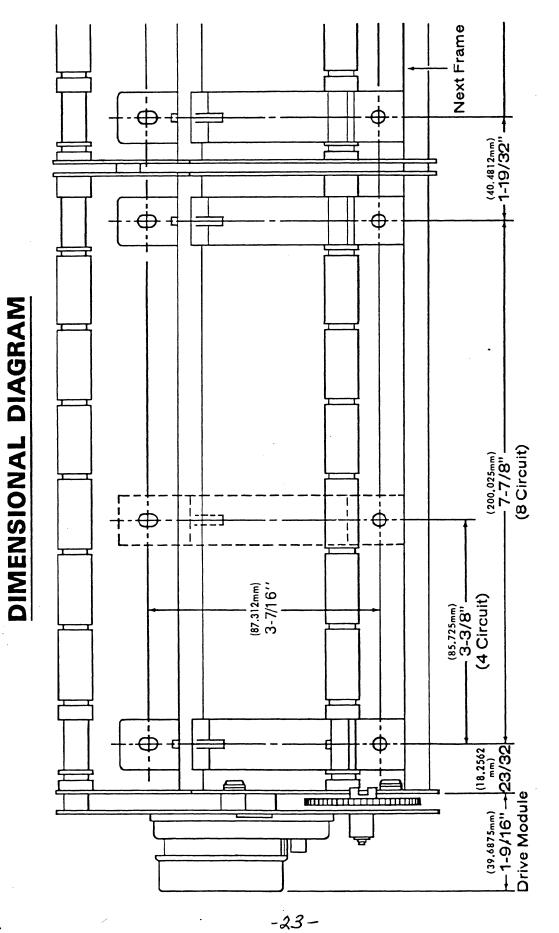
<u></u>.

- Module until the Red Tabs on all the two hour program dials are in line with To remove a Program Module, rotate the black reduction gear on the Motor the spring mounting hole for the Module latching lever on the Module plate. .-
- align the tongue/groove on either side of the Module, and snap the Module by hand until all Red Tabs are in line with the spring mounting hole for the numbers on all the 24 hour dials are lined up. Rotate the 2 hour dial sections until this line up is obtained. Rotate the 2 hour dial of the Module to be installed until the Red Tab is in line with the spring mounting hole for the Module down over the non-slotted frame rod. Check to be sure all Red Tabs line up To re-install a Program Module, follow #1 above and rotate the trailing Modules Module latching lever on the Module plate. Check to be sure that the black latching lever on the Module plate and the black numbers on the 24 hour dial are in the same position as those on Modules already in the frame. Then fit the Module cutout (located above the switches) into the slotted frame rod, and all 24 hour dial numbers line up. ы.

21-


V. Installation/Removal of Drive Module

- 1. To remove Drive Module, rotate black reduction gear until tongue/groove with Program Module #1 is parallel to mounting surface.
- 2. Loosen hex nut fully.
- Hour Dials until the three locator studs clear their keyslots, then remove the Slide complete Motor Module parallel to mounting surface and toward the 24-Module. . .
- 4. To reinstall, reverse steps above.

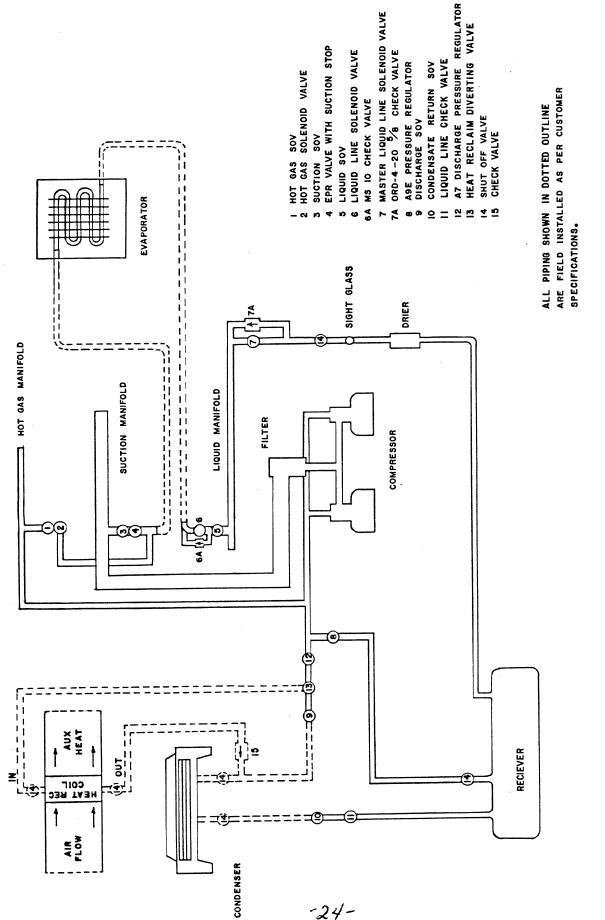

Ö.

MOTOR MODULE

(

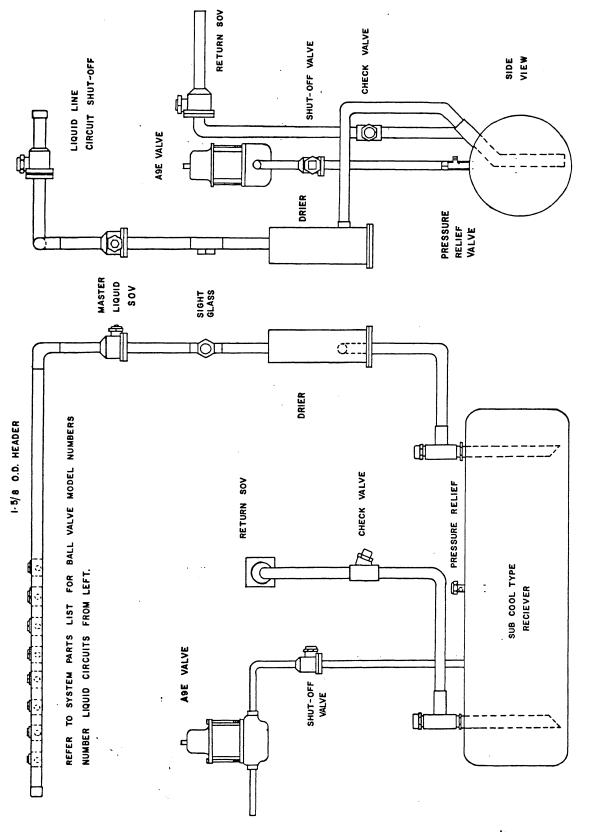
- 22 -

Paragon


606 Parkway Blvd., P.O. Box 28, Two Rivers, WI 54241 U.S.A.

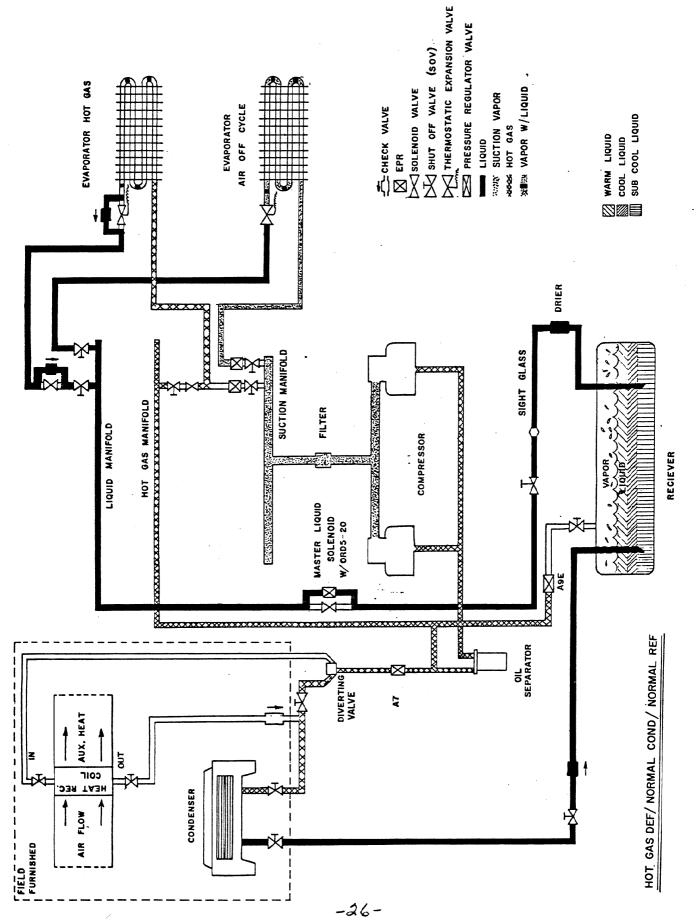
EXPORT SALES OFFICE: Two Rivers, Wisconsin 54241 U.S.A. Cable: PECO Telex 26-3450 PARAGON TWOR

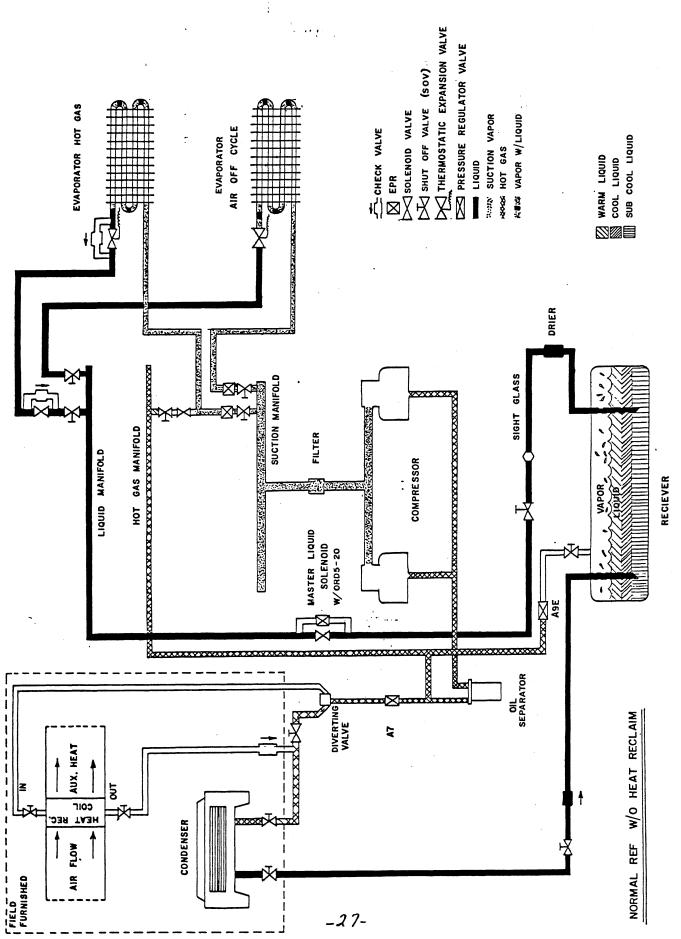
IN CANADA: PARAGON ELECTRIC P.O. Box 1030 Guelph, Ontario Division of AMF CANADA LIMITED

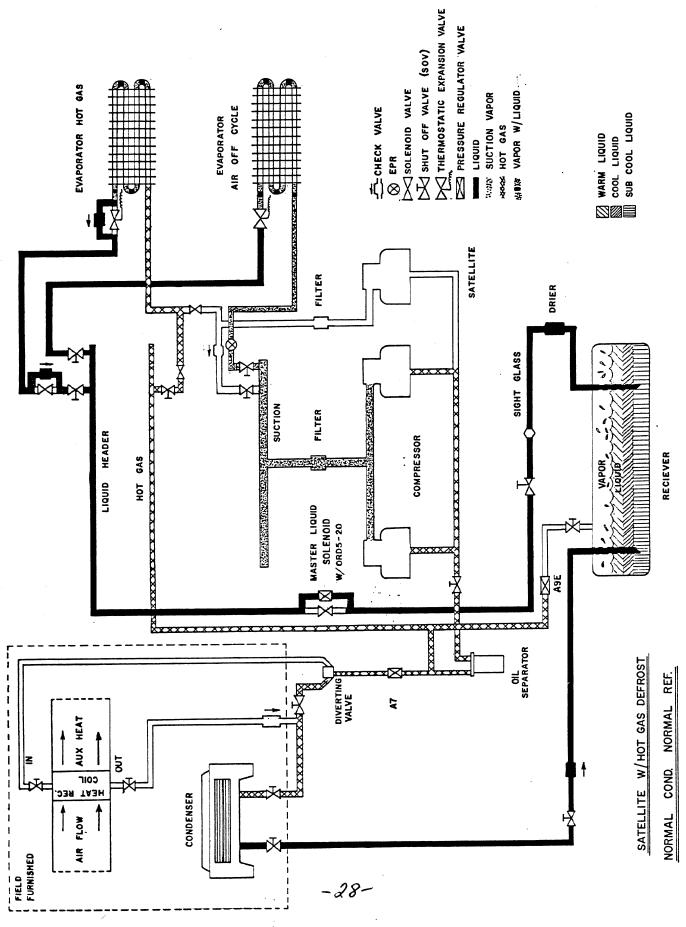

Part No. 22922; 2/78

ω.

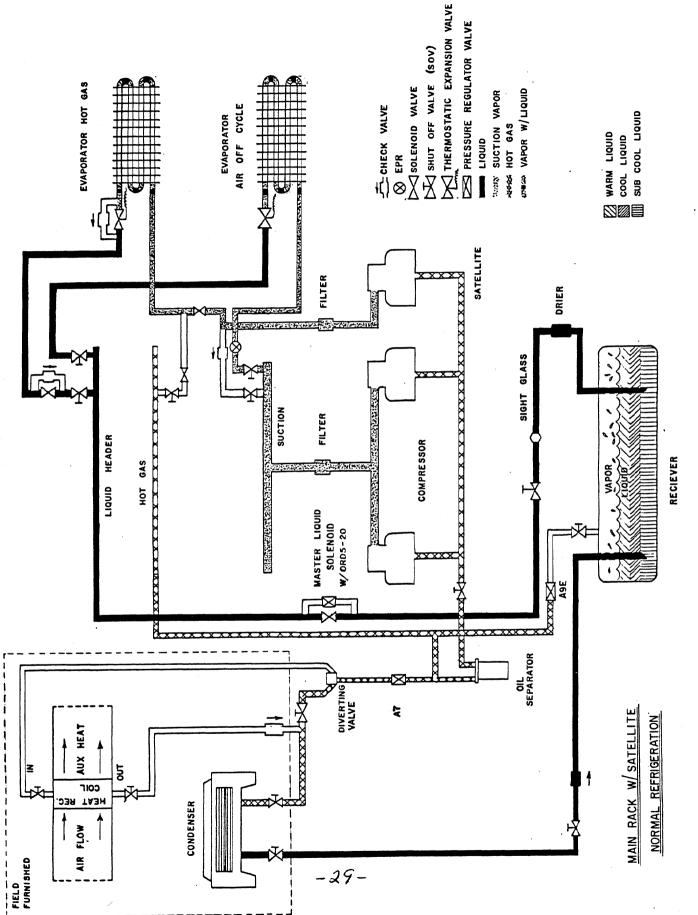
GENERAL PARALLEL SYSTEM LAYOUT OF PIPING


-24-

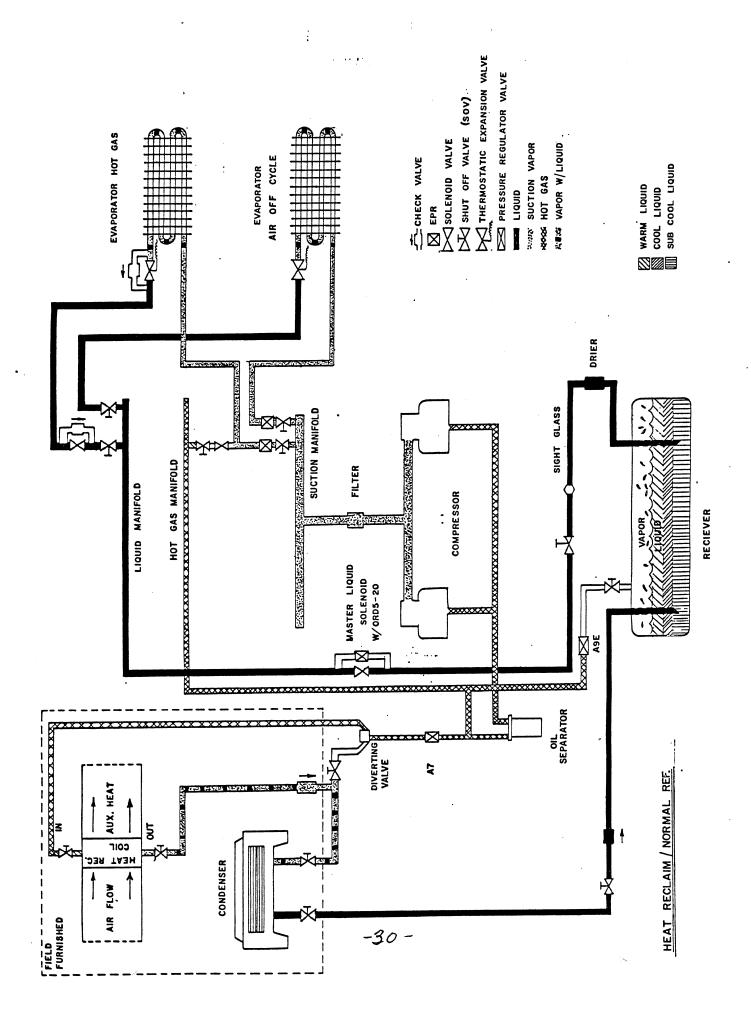

-25-

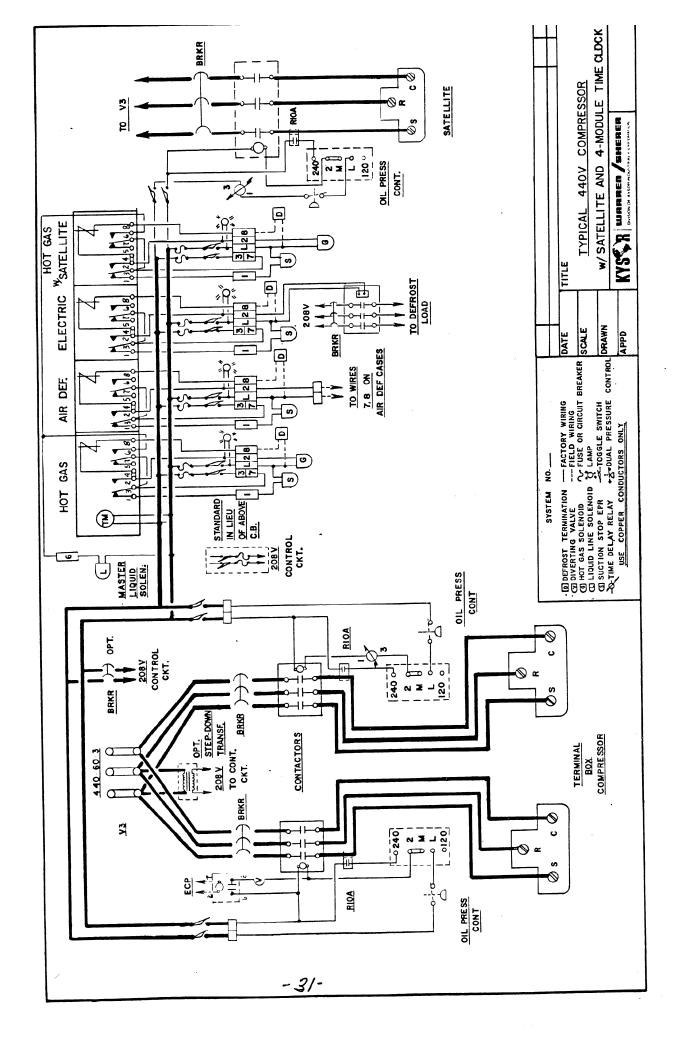

LIQUID MANIFOLD WSTANDARD PRESSURE CONTROL

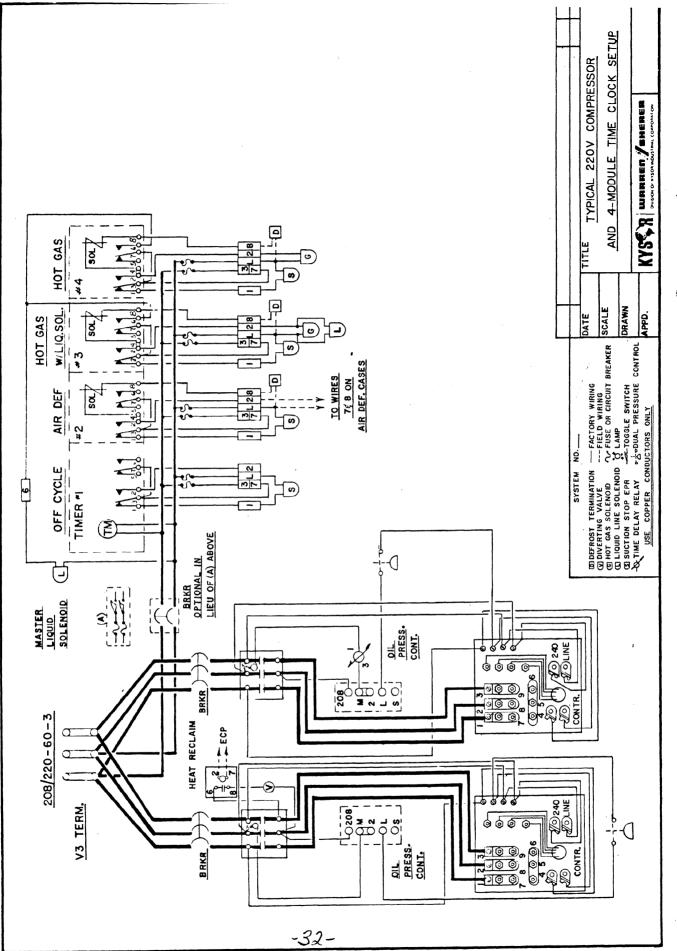
FRONT



.






•

.

.....